
Experimental	Results	with	BPIO	2.0
• Initial	performance	evaluation	of	the	preloadable

BPIO	framework	with	the	IOR	benchmark
• Performance	improvement	and	average	bandwidth	

per	second	are	similar	to	the	direct	integration	of	
BPIO	into	an	application

Aequilibro Performance	Results
• IOR	synthetic	benchmark	(POSIX	and	MPI-IO):

– Setups:	(I)	Default,	(II)	ADIOS,	(III)	BPIO,	(IV)	Aequilibro
– 10	scaled	runs	per	test	case	on	Titan,	3	repetitions	per	run

• Real-world	HPC	workload	based	on	S3D	physics	code
• Metrics	of	interest:

– Performance	improvement	with	BPIO
– Average	bandwidth	per	second	(GB/s)

• Test	System:
– Titan	
– Cray	XK7
– 18,688	nodes
– Spider	II	
(Lustre-based)
file	system

– 144	OSSs
– 1,008	OSTs
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Balanced	Placement	I/O	Framework	– BPIO	2.0
BPIO	Runtime	Environment
• Build	as	a	shared,	preloadable library	(LD_PRELOAD)
• Utilizes	BPIO	library	for	balanced	data	placement
• Uses	function	interposition	to	prioritize	itself	over	

standard	function	calls
• End-to-end	and	per	job	load	balancing
• Supported	I/O	interfaces	include	POSIX	I/O	and	

MPI-IO;	HDF5	is	under	development
Dynamic	Instrumentation
• Wrapper	functions	to	intercept	I/O	functions
• Internal	functions	to	initialize	and	maintain	

internal	data	structures	and	module-specific	
I/O	characterization	data

• Set	of	functions	to	interact	with	the	BPIO	library

An	I/O	Load	Balancing	Framework	
for	Large-scale	Applications	(BPIO	2.0)

Research	Objectives
• Design	and	implement	a	preloadable,	shared	library	

based	on	the	BPIO	library
• Evaluate	the	performance	of	the	framework	with	a	

synthetic	benchmark	(IOR)	for	POSIX	I/O	and	MPI-IO
• Evaluate	with	real-world	HPC	workloads	on	Titan

Conclusions
• Aequilibro provides	performance	improvement,	but	

requires	the	explicit	BPIO	integration	into	ADIOS’	
transport	methods

• BPIO	2.0	is	built	as	a	dynamic	library	so	it	does	not	
require	any	code	modification	or	recompilation	

• Initial	experiments	show	similar	performance	
improvement	trends	as	a	direct	BPIO	integration

• Ongoing	and	future	work:
– Single	shared	file	support	for	MPI-IO
– Extensive	real-world	HPC	workload	evaluation
– Performance	comparison	of	Aequilibro and	BPIO	2.0
– Support	of	HDF5

Introduction
Balanced	Placement	I/O	(BPIO)	Library
• Topology-aware	and	balanced	data	placement	[1]
• Resolves	application-level	I/O	contention
• Computes	placement	cost	for	each	I/O	client	based	

on	a	tunable,	weighted	cost	function:

• Available	as	a	user	space	library,	but	requires	direct	
integration	into	the	source	code

Aequilibro – Integrating	BPIO	with	ADIOS	
• ADIOS	[2]	provides	portable,	fast,	scalable,	easy-to-

use,	metadata	rich	output	and	I/O	interfaces	can	be	
changed	during	runtime

• Aequilibro [3]	combines	the	optimization	done	at	
the	interconnect	level	by	BPIO	with	the	benefits	of	
the	ADIOS	I/O	framework
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Problem	Statement
• Large-scale	scientific	applications’	usage	patterns	

lead	to	I/O	resource	contention	and	load	imbalance
• Implementation	of	a	dynamic,	shared	library	based	

on	BPIO,	a	method	to	resolve	contention,	provides	a	
transparent	way	to	balance	resource	usage	without	
source	code	modification	or	recompilation
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Placement)Cost)=)w1*R1 +w2 *R2 +w3 *R3 +w4 *R4 Fig. 3:	IOR	bandwidth	performance	for	setup	(I)	to	(IV)	for	POSIX	I/O	and	MPI-IO	including	errors	bars.

Fig. 1: Aequilibro software	stack.

Fig.	2:	Titan	supercomputing system.
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Fig. 4:	Performance	improvement	for	IOR	(I)	vs.	(III)	and	(II)	vs. (IV)	at	large-scale. Fig.	5: S3D	performance	improvement.

Fig. 6:	BPIO	runtime	environment.

Ri:	resource	component			wi:	weight	factor

Fig. 9:	Bandwidth performance	for	IOR	Default	and	IOR	BPIO	2.0.

Fig. 8:	Performance	improvement	for	IOR	BPIO	2.0	vs.	IOR	Default.

Fig. 7:	Dynamic	interception	of	I/O	functions	at	runtime.


